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Abstract. Over the last 4 years, Bitcoin, a decentralized P2P crypto-
currency, has gained widespread attention. The ability to create pseudo-
anonymous financial transactions using bitcoins has made the currency
attractive to users who value their privacy. Although previous work has
analyzed the degree of anonymity Bitcoin offers using clustering and
flow analysis, none have demonstrated the ability to map Bitcoin ad-
dresses directly to IP data. We propose a novel approach to creating and
evaluating such mappings solely using real-time transaction traffic col-
lected over 5 months. We developed heuristics for identifying ownership
relationships between Bitcoin addresses and IP addresses. We discuss
the circumstances under which these relationships become apparent and
demonstrate how nearly 1,000 Bitcoin addresses can be mapped to their
likely owner IPs by leveraging anomalous relaying behavior.
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1 Introduction

Bitcoin is a decentralized peer-to-peer crypto-currency first proposed and imple-
mented by Satoshi Nakamoto, a likely pseudonym, in 2009 [1]. It allows end-users
to create pseudo-anonymous financial transactions; instead of disclosing personal
information, users create any number of Bitcoin identities/addresses, in the form
of cryptographic keys, which are used to accept and send bitcoins. We have seen
the perceived anonymity provided by Bitcoin leveraged when Wikileaks was able
to receive over 1,000 “anonymous” Bitcoin donations totaling over 32,000 USD;
other financial institutions, such as Paypal, prevented supporters from making
donations using fiat currencies due to government pressure [2]. We have also seen
the birth and recent death of the Silk Road, a Bitcoin marketplace once called
“the Amazon.com of illegal drugs” [3, 4].

Previous studies (discussed in Section 3) showed that it may be possible to
cluster Bitcoin identities into distinct entities, track the flow of their bitcoins, and
in some instances deanonymize them using external information like forum posts
where people divulged their Bitcoin identities intentionally. To our knowledge,
there has been no work that has attempted to relate Bitcoin addresses to specific
IPs. The ability to create such mappings is important since there have been
cases where individuals participating in P2P networks have been identified by
law enforcement after their ISPs had been subpoenaed [6]. In this work, we set
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out to determine if real-time transaction traffic received from directly connected
peers can alone be used to create Bitcoin address-to-IP mappings. This approach
was inspired by a technique proposed by Dan Kaminsky during the 2011 Black
Hat conference [5].

By analyzing 5 months of data we collected using our custom-built Bitcoin
client, we were able to classify distinct transaction relay patterns and design
heuristics for hypothesizing transaction ownership. We then demonstrated how
Bitcoin address-to-IP mappings can be derived and evaluated using aggregate
statistics from our transaction data. We found that even after applying conser-
vative thresholds, several hundred high-confidence (> 90%) ownership pairings
could still be discovered in our data. Over 1,000 remained if we allowed thresh-
olds to drop to 50%. We note, however, that the majority of these were obtained
from anomalously relayed transactions, and that normal transaction traffic over-
all proved to be very difficult to deanonymize.

The rest of this paper is organized as follows. Section 2 gives a brief back-
ground of the Bitcoin protocol, while Section 3 provides an overview of related
work. In Section 4, we discuss CoinSeer, our custom-built Bitcoin client. Sec-
tion 5 presents several interesting cases we discovered that inspired our later
methodology. We outline our final approach in Section 6, discussing how to cre-
ate, evaluate, and prune Bitcoin address-to-IP mappings. In conclusion, Section
7 discusses our results, as well as the caveats and limitations of our method.

2 Background

Bitcoin is a decentralized currency which requires certain participants called
miners to validate financial transactions. In order to prevent people from (a)
using money which does not belong to them, or (b) reusing money which they
have already spent (this is called double-spending), the entire history of these
transactions must be publicly available; this is to avoid a single point of central-
ization. The historical transaction ledger is called the block chain and can be
accessed and scrutinized by anyone. Nothing is encrypted. To protect users’ iden-
tities, IP information is never stored, and cryptographic keys are used instead
of personal information. Bitcoins are sent to and from users’ public keys, which
are often referred to as Bitcoin addresses1. In this way, despite all transactions
being public, the parties involved remain pseudo-anonymous.

2.1 Anatomy of a Transaction

Bitcoins change hands via transactions. A transaction is a data structure that
contains inputs and outputs. The sender of a transaction uses the inputs to
claim coins he received in older transactions; he lists the recipient(s) of these
coins within the transaction’s outputs.

1 Omitting certain details, a Bitcoin address is simply a public key to which a number
of transformations and hashes have been applied. Thus, the terms Bitcoin address
and public key can be used interchangeably.
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For example, if Alice wants to receive 50 bitcoins (BTC) from Bob, she
creates an asymmetric key-pair and gives him her public key, A+. Bob creates
a transaction and encodes Alice’s public key as the recipient of his coins within
one of the transaction’s outputs (Figure 1, Transaction 1). The next day, Alice
wants to send 20 BTC to Charlie. She creates a new transaction and claims the
money she received from Bob by referencing it in one of the transaction’s inputs
(Figure 1, Transaction 2). An important caveat of the Bitcoin protocol is that
the amount of bitcoins claimed in an input cannot be specified. In order for Alice
to only send 20 BTC to Charlie, she has to create an extra output to send 30
BTC in change back to herself (Transaction 2, Output 1). She can then reference
this change in later transactions. After specifying all her outputs, Alice signs the
new transaction with her private key (A−) and includes this signature within
the corresponding input. In this way, ownership of the referenced coins can later
be verified and the transaction’s integrity is protected.

Transaction 1: Bob pays Alice 50 BTC 

Input 0 Output 0 

Address: B+ Address: A+

Prev. Tx: 0 Amount: 50 BTC 

Output #: 0 

Signature: <sig of Tx 1 using B
-
> 

Transaction 2: Alice pays Charlie 20 BTC 

Input 0 Output 0 

Address: A+ Address: C+

Prev. Tx: 1 Amount: 20 BTC 

Output #: 0 

Signature: <sig of Tx 2 using A
-
> Output 1 

Address: A+ 

Amount: 30 BTC 

Fig. 1. This figure demonstrates how Alice, who owns Bitcoin address A, would create
a new transaction (Transaction 2) which spends bitcoins received earlier (Transaction
1). Note that the Bitcoin address of the input must match the Bitcoin address of the
referenced output. Note also that the sender of the transaction must sign it with her
private key (denoted in this diagram with the superscript -). We caution that this is a
simplified representation of the internals of a transaction.

In general, users are encouraged to have many Bitcoin addresses. Thus, Alice
could have sent her change to a different address she owns. Additionally, if she
needed to spend more than 50 BTC, she could have created additional inputs,
each of which would reference older transactions. This is called a multi-input
transaction.

2.2 P2P Relaying

Bitcoin uses a gossip protocol [7] to relay messages across the network. When
a user creates a transaction, he sends it to his directly connected peers. These
peers assess whether the transaction is valid (discussed below). If it is, they
relay it to their peers and the transaction gets propagated through the rest of
the network. If it is not valid, it is simply ignored.

A transaction received from a peer must pass a series of checks before being
further relayed. Besides basic sanity checks to make sure the transaction format
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conforms to the protocol, Table 1 shows common reasons a peer may ignore a
transaction.

Type Description

Repeated The transaction has already been relayed recently.

Old The transaction is already in the main block chain.

Double-Spend The transaction attempts to claim an output already claimed by a
previous transaction.

Bad Signature The input signature(s) cannot be verified (e.g. attempting to spend
someone else’s coins).

Orphan One or more of the outputs claimed by the inputs cannot be found.

Table 1. Types of Ignored Transactions

3 Related Work

Several academic papers have analyzed the extent of anonymity in Bitcoin. The
majority of them cluster Bitcoin addresses into distinct entities, analyze the flow
of bitcoins among these entities, and in some instances tie entities to identifying
information through external means. To our knowledge, no one has attempted
to deanonymize Bitcoin addresses at the IP level, and no other papers discuss
using actual relay traffic.

The original Bitcoin paper [1] cautioned that although users could hide their
identities behind Bitcoin addresses, the public nature of the transaction ledger
could allow addresses to be linked together. Multi-input transactions, which at
the time could only be created by one user, were cited as a potential means
to clustering multiple Bitcoin addresses into one entity. Reid and Harrigan [8]
downloaded the public transaction ledger (i.e. block chain) and used this method
to cluster Bitcoin addresses into “users”. They created two networks, modeling
the flow of bitcoins among transactions and users, and analyzed their topologies.
The authors showed how these graphs, along with external information from fo-
rum posts, can be used to track a particular target (in this case, a thief). Ron
and Shamir [9] mirrored Reid and Harrigan’s two-graph solution when analyz-
ing the typical behavior of entities on the Bitcoin network, including how these
entities acquire and spend bitcoins and how they move their funds around to
protect their privacy. Androulaki et al. [10] again took a similar approach, us-
ing data from a simulation of bitcoin usage in a university setting. In addition
to input clustering, the authors used K-means and Hierarchical Agglomerate
Clustering to tie together behavioral patterns. They also clustered inputs with
outputs based on their own heuristic. Meiklejohn et al. [11] also used input and
output clustering to create a set of “users.” They actively interacted with par-
ties on the Bitcoin network to create a list of known Bitcoin addresses for each
party, using this information to assign identities to their clusters. Finally, they
used flow analysis to study interactions among users.

Other papers did not try to deanonymize Bitcoin users, but instead gave
wholistic analyses of anonymity and proposed some solutions. Ober et al. [12],
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using the available transaction history, analyzed what increases and decreases
anonymity in Bitcoin, concluding that clustering is the most important challenge
the community faces. Miers et al. [13], arguing that Bitcoin is not truly anony-
mous, proposed an extension to the protocol that uses cryptography to make
transactions fully anonymous. Barber et al. [14] discussed the various vulnera-
bilities inherent to Bitcoin, finally proposing and outlining a trust-free mixing
service. Moore and Christin [15] cautioned that mixing services, exchanges, and
other centralized intermediaries can pose a major risk to Bitcoin investors since
they can either have a security breach or close and disappear with people’s bit-
coins.

4 CoinSeer: The Need For A Custom Bitcoin Client

Inspired by Dan Kaminsky’s 2011 Black Hat presentation [5], we decided to
analyze traffic patterns on the Bitcoin network to see if it was possible to create
mappings from Bitcoin addresses to IPs. To increase the likelihood of receiving
transactions directly from their creators in a gossip protocol, we had to connect
to all listening peers. We actively collected all data, along with its IP information,
being relayed on the network and stored it for offline processing.

Although numerous Bitcoin clients exist, none of them are specialized for
data collection. Available clients often need to balance receiving and spending
bitcoins, vetting and rejecting invalid transactions, maintaining a user’s wallet,
mining bitcoins, and, perhaps most detrimental to our study, disconnecting from
“poorly-behaving” peers; these were precisely the peers we were interested in.

Because existing software had integrated functionality that interfered with
our goals, we decided to build our own Bitcoin client called CoinSeer, which
was a lean tool designed exclusively for data collection. For 5 months, between
July 24, 2012 and January 2, 2013, CoinSeer created an outbound connection
to every listening peer whose IP address was advertised on the Bitcoin network.
We maintained that connection until either the remote peer hung up or timed
out. In any given hour, we were connected to a median of 2,678 peers; for the
duration of our collection period, we consistently maintained more connections
than the only other Bitcoin superclient we know of - blockchain.info. This data
collection effort required storing 60 GB of data per week.

5 Discovering Anomalous Relay Patterns

When we began analyzing our collected data, we manually looked for interesting
behavior. The following are specific cases that led us to believe that transaction
relay behavior may be used to map Bitcoin addresses to IPs.

Case 1: On August 31, 2012, we received a transaction from a single IP that
was never relayed again. This “single-relayer” transaction is highly unusual for
a P2P system using a gossip protocol; we would expect to have received it from
the majority of the approximately 2,500 peers we were connected to at the time.
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On September 3, 2012, a new transaction with the same inputs and outputs was
relayed network-wide and accepted into the blockchain. Given this information,
can we assume the sole relayer of the first transaction was its creator and thus
owns the Bitcoin addresses inside?

Case 2: On August 22, 2012, a single IP sent us 11,730 unique transactions
within a 74-second window. The median rate we received transactions was only
43 per minute. Because these transactions were already in the block chain, they
were not relayed by anyone else, making them “single-relayer” transactions. Us-
ing connection metadata, we saw that this large transaction dump corresponded
with this user upgrading to a newer version of the Bitcoin client he was using.
Could all of these belong to the single relayer?

Case 3: For 52 days, beginning on July 24, 2012, we received the same transac-
tion from a single IP approximately once every hour; no one else on the network
relayed it. The peer then disconnected, only for a new IP to connect and exhibit
the same behavior for the next 23 hours. This occurred again with the appear-
ance of a third IP, finally going silent a day later. Why would a transaction be
continually rerelayed, and what connection does it have to its rerelayers?

6 Methodology

Manually discovering instances of exploitable anomalous behavior proved to be
unscalable. We attempted to generalize the patterns we observed, some of which
were demonstrated by the cases in Section 5, in order to come up with a more
algorithmic approach for mapping Bitcoin addresses to the IPs that own them.
This approach requires six phases:

Phase 0 Prune transaction data to remove potential sources of noise.
Phase 1 Using relay patterns we have observed for transactions, hypothesize

an “owner” IP for each transaction.
Phase 2 Break transactions down into their individual Bitcoin addresses.

We do this to create more granular (Bitcoin address, IP) pairings
Phase 3 Compute statistical metrics for our (Bitcoin address, IP) pairings.
Phase 4 Identify pairings that may represent ownership relationships.
Phase 5 Eliminate ownership pairings that fall below our defined thresholds.

6.1 Phase 0: Pruning Transaction Data

By the end of our 5 month collection period, we had relayer information for
5,617,202 transactions. This number included some noise; there were 57,087
transactions whose hashes were advertised but which were never relayed, as well
as 300 that contained a Bitcoin address we could not parse. These were removed
from consideration. Additionally, we removed 114,100 transactions that exhib-
ited relay patterns which made establishing ownership ambiguous (see Section
6.2, and Figure 5 in particular).
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Our biggest source of potential noise were multi-input transactions. In this
work, we assume that each transaction has only one owner. A multi-input trans-
action can be created by one or multiple, unrelated entities with no way to
distinguish the difference [16]. Other academic works do not acknowledge this
possibility. We argue that not excluding multi-input transactions could lead to
incorrect assumptions being made about the ownership of a Bitcoin address.
To be conservative, we removed all 1,544,509 multi-input transactions from our
dataset, leaving us with 3,901,206 transactions to analyze.

6.2 Phase 1: Hypothesizing Transaction Owner IPs

Phase 1 of our approach involved hypothesizing which of each transaction’s relay-
ers is its owner. This step acts as a bridge to later mapping the Bitcoin addresses
internal to each transaction to owner IPs.

We know that the creator of a single-input transaction owns the input Bitcoin
address (since the transaction must be signed by the corresponding private key2).
Given that Bitcoin uses a gossip protocol and we expect multiple people to relay
a single transaction, how can we determine the IP of its creator?

When a peer either creates or receives a valid transaction, he sends adver-
tisements to all of his peers, all of whom can request and repropagate it. Since
we were connected to thousands of peers, we received a typical transaction be-
tween 1,500 and 2,500 times. As demonstrated by the three cases in Section 5,
we found that certain transactions exhibited atypical behavior; the transactions
from Case 1 and 2 were relayed by only a single IP, while Case 3 demonstrated
rerelaying behavior. Whereas for a typical transaction, we can only hope that
the creator was its first relayer3, anomalies provide additional information that
we can leverage when hypothesizing ownership.

Below, we discuss the 3 distinct relaying patterns exhibited by transactions
within our collected data and the heuristics we used to hypothesize transaction
ownership.

Relay Pattern 1: Multi-Relayer, Non-Rerelayed Transactions

The first and most common relay pattern involves a transaction being relayed
by multiple people, each of whom relayed the transaction a single time. This is
expected behavior according to the protocol and 3,671,341 (approx. 91.4%) of
our transactions exhibited this relay pattern.

We present an example in Figure 2 to demonstrate ownership assignment for
transactions exhibiting this relay pattern.

Relay Pattern 2: Single-Relayer Transactions

The second relay pattern involves a transaction being relayed by a single person.
This includes transactions relayed once, as well as transactions that were relayed
multiple times by the same IP. Cases 1 and 2 from Section 5 fall into this category.

2 We note that this does not mean the creator owns the funds associated with that
Bitcoin address (see discussion on eWallets in Section 7).

3 We discuss why this assumption is flawed in Section 7.
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Fig. 2. In the timeline at right, Tx 1 is
being relayed once by each IP. Since this
is normal behavior, there is no additional
information to exploit. In this case, we
simply choose the first relayer - IP 1 -
as the “owner.”

This behavior is highly unusual for a system using a gossip protocol, and only
101,462 (approx. 2.5%) of our transactions exhibited this relay pattern.

This behavior may arise when a peer creates an invalid transaction that its
immediate peers reject. Since we attempt to be a directly connected peer of
every Bitcoin node, we are able to record the transaction despite it not being
relayed on the network. To demonstrate ownership assignment for transactions
exhibiting this relay pattern, we present an example in Figure 3.

Fig. 3. The timeline at right shows the
advertisements of Tx 2. Since only one IP
ever relayed this transaction, there is no
ambiguity; we assign the single relayer

- IP 3 - as the “owner.”

Relay Pattern 3: Multi-Relayer, Rerelayed Transactions

The third relay pattern involves a transaction being relayed by multiple people
and retransmitted by at least one of them. Case 3 from Section 5 demonstrated
this behavior. A total of 242,503 (approx. 6.04%) of our transactions exhibited
this relay pattern.

The Bitcoin protocol states that a transaction will not be relayed twice by
any node except the sender or recipient of coins in that transaction [17]. By
rerelaying a transaction, an IP exposes its association with at least one of the
keys contained inside. Although this may appear to be a clear way of establish-
ing ownership, we found that many transactions had multiple rerelayers, thus
making ownership assignment ambiguous. Besides the transaction’s creator, any
number of its recipients may also choose to rerelay it. Additionally, all IPs even-
tually “forget” which transactions they have already relayed, leading to some
transactions getting relayed by the whole network in waves.

To remain conservative when hypothesizing ownership, we decided to split
the transactions exhibiting this relay pattern into the following two groups:

1. Relay Pattern 3A: Multi-Relayer, Single Rerelayer Transactions
This group contains transactions relayed by multiple people, where only a
single person rerelayed the transaction. Approximately 3.2% (128,403) of our
transactions exhibited this relay pattern. Figure 4 provides an example of
ownership assignment for transactions in this group.
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Fig. 4. For Tx 3, everyone but IP 2 is ex-
hibiting the expected behavior of sending
the transaction only once. Since only the
sender or recipient of coins in a transac-
tion is supposed to rerelay that transac-
tion, we assign the single rerelayer - IP
2 - as the “owner.”

2. Relay Pattern 3B: Multi-Relayer, Multi-Rerelayer Transactions
This group contains transactions relayed by multiple people, where at least
two people rerelayed the transaction. Approximately 2.8% (114,100) of our
transactions exhibited this relay pattern. Figure 5 provides an example of
why ownership assignment for transactions in this group is ambiguous.

Fig. 5. This is similar to Tx 3, but there
are now multiple rerelayers. This makes
ownership assignment more ambiguous.
Do we assign it to the first rerelayer, or
the one with the most relays? To err on
the side of caution, we removed transac-
tions with more than one rerelayer from
consideration.

6.3 Phase 2: Creating (Bitcoin Address, IP) Pairings

In Phase 2, we pair the owner IPs assigned to each transaction in Phase 1 with
the Bitcoin addresses contained within that transaction. This brings us closer
to our goal of associating Bitcoin addresses with IPs and prepares our data for
statistical analysis.
We begin by splitting every transaction into a set of triplets which consist of:

1. a Bitcoin address from the transaction
2. the IP which we hypothesized owns the transaction, and
3. the unique transaction number we assigned to this transaction

There is a triplet for each unique Bitcoin address found within a transaction. Be-
cause it matters whether a Bitcoin address appears as an input or an output in a
transaction, we keep triplets made from input and output Bitcoin addresses sep-
arate. Figure 6 demonstrates how 3 transactions can be split into corresponding
(Bitcoin address, IP, Tx #) triplets.

We note that at the end of Phase 1, our data consisted of 3 groups of trans-
actions, split based on their relaying patterns. For this and subsequent Phases,
the data maintains its relaying pattern split since eventual Bitcoin address-to-
IP mappings obtained from anomalously relayed transactions are arguably more
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TX 1 : owned by IP 1

inputs:

b1

outputs:

b2 

b3 

b4 

TX 2 : owned by IP 1

inputs:

b1

outputs:

b2 

b3 

TX 3 : owned by IP 2 

inputs:

b1

outputs:

b2 

b3

Output Triplets

(b2, IP1, Tx1) 

(b3, IP1, Tx1) 

(b4, IP1, Tx1) 

(b2, IP1, Tx2) 

(b3, IP1, Tx2)

(b2, IP2, Tx3) 

(b3, IP2, Tx3) 

Input Triplets

(b1, IP1, Tx1) 

(b1, IP1, Tx2) 

(b1, IP2, Tx3) 

Fig. 6. Decomposing transactions into triplets involving their internal Bitcoin ad-
dresses.

likely to be correct. For instance, Figure 7 shows what our data looks like at the
end of this phase.

Dataset 1
Relay Pattern 1 Data 

(Normal)

Input Triplets 

(b1, IP1, Tx1)

(b2, IP1, Tx2) 

: 

(b4, IP1, Tx4)

Output Triplets 

(b3, IP8, Tx1)

(b1, IP1, Tx1) 

: 

(b6, IP6, Tx4)

Dataset 2
Relay Pattern 2 Data 

(Anomalous)

Input Triplets 

(b1, IP1, Tx5)

(b2, IP1, Tx7) 

: 

(b4, IP1, Tx6)

Output Triplets 

(b3, IP8, Tx5)

(b1, IP1, Tx6) 

: 

(b6, IP6, Tx8)

Dataset 3
Relay Pattern 3 Data 

(Anomalous)

Input Triplets 

(b1, IP1, Tx10)

(b2, IP1, Tx12) 

: 

(b4, IP1, Tx14)

Output Triplets 

(b3, IP8, Tx11)

(b1, IP1, Tx13) 

: 

(b6, IP6, Tx18)

Fig. 7. This figure illustrates how our data is split according to Relay Pattern at the
end of Phase 2. It maintains this split in all later phases.

6.4 Phase 3: Computing Pairing Statistics

In Phase 3, we turn our triplet data from Phase 2 into (Bitcoin address, IP)
pairings by aggregating over all transactions within the corresponding dataset
(from Figure 7). This step serves to identify unique (Bitcoin address, IP) pairings
and compute statistics for the occurrence of each pairing within the dataset.

We can think of a transaction owned by IP i which contains Bitcoin address
b as a “vote” for the pairing between b and i. We can aggregate our triplet data
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over these “votes” to form a set of unique (Bitcoin address, IP) pairings, each
with the following metrics:

1. The number of unique transactions owned by IP i that contain Bitcoin ad-
dress b within their inputs.

NI(b, i)

2. The number of unique transactions owned by IP i that contain Bitcoin ad-
dress b within their outputs.

NO(b, i)

3. The confidence (probability) that a transaction containing Bitcoin address
b within its inputs is owned by IP i.

CI = NI(b,i)
NI(b)

4. The confidence (probability) that a transaction containing Bitcoin address
b within its outputs is owned by IP i.

CO = NO(b,i)
NO(b)

where NI(b) and NO(b) represent the number of unique transactions that contain
Bitcoin address b as an input and output, respectively. After formulating our data
in this way, this problem becomes much like an evaluation of association rules
of the form b → i [18], where CI and CO represent the confidence scores and
NI(b, i) and NO(b, i) gauge the support counts for the rule when the Bitcoin
address is either an input or an output, respectively.

Table 2 shows how the transactions from our example in Figure 6 would be
transformed into pairings with corresponding computed metrics, assuming those
were the only transactions in the dataset being analyzed.

Bitcoin address IP address NI(b, i) CI NO(b, i) CO

b1 ip1 2 2/3 = 66.67% 0 0
b1 ip2 1 1/3 = 33.33% 0 0
b2 ip1 0 0 2 2/3 = 66.67%
b2 ip2 0 0 1 1/3 = 33.33%
b3 ip1 0 0 2 2/3 = 66.67%
b3 ip2 0 0 1 1/3 = 33.33%
b4 ip1 0 0 1 1/1 = 100%

Table 2. The table shows how
the 3 transactions from Figure 6
would be transformed into pair-
ings between Bitcoin addresses
and IPs.

6.5 Phase 4: Identifying Ownership Pairings

Phase 4 involves interpreting the statistics obtained in Phase 3 to figure out
which pairings may indicate ownership relationships. The relationship between
the Bitcoin address and the IP in a given pairing depends on the region the
pairing maps to on the CI × CO plane. Figure 8 provides a summary of the
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Fig. 8. Interpretations for the
different regions a given (Bit-
coin address, IP) pairing could
map to on the CI × CO plane.

Region A 

If a pairing lands in this 

region, we cannot 
identify the relationship 

between the IP and the 

Bitcoin address 

Region B 

If a pairing lands in this 

region, we assume the 

IP owns the Bitcoin

address 

Region D 

If a pairing lands in this 

region, there is likely no 
association between 

the IP and the Bitcoin 

address

Region C 

If a pairing lands in this 

region, we assume the 

IP owns the Bitcoin

address 

CO

100%

50%

50% 100%

The confidence that this IP is 

associated with this Bitcoin 

address when it appears as an 

input

CI

The 

confidence 

that this IP 

is associated 

with this 

Bitcoin 

address 

when it 

appears as 

an output

interpretations of the different regions on this plane and we explain how we
came to these conclusions below.

Region A If a pairing (b, i) maps to Region A (CI ≤ 50%∧CO > 50%), we can
interpret the high CO as indicating that the majority of transactions sending
money to Bitcoin address b (i.e. where b was an output) were created by IP i.
The low CI indicates that this is not the case for transactions drawing on funds
from b (i.e. where b was an input). There are two situations that can give rise to
this combination of confidence scores:

1. IP i owns Bitcoin address b, using it frequently for receiving change, its
own funds (ex: if it is an offline wallet), or payments from others but rarely
drawing on those funds for future payments.

2. IP i does not own Bitcoin address b but frequently sends money to the person
who does own it. This could indicate a business relationship.

Without additional information to discern between the two cases, we cannot

form conclusions about Region A pairings.

Region B If a pairing (b, i) maps to Region B (CI > 50% ∧ CO > 50%), we
can say that the high CO and CI indicate that IP i created both the majority of
transactions sending money to Bitcoin address b (i.e. where b was an output) as
well as the majority of transactions spending funds tied to b. This would usually
occur when a user reuses the same Bitcoin address for making payments and
receiving change and thus very likely implies an ownership relationship between
the IP and the Bitcoin address.

Region C If a pairing (b, i) maps to Region C (CI > 50% ∧ CO ≤ 50%), we
know due to the high CI that IP i created the majority of transactions drawing
on funds from b; however, the low CO signifies that the IP did not create many
transactions that involved receiving money using b. Such a combination would
occur if a user often sends money from b but does not reuse it for receiving
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change. Thus, b would be paired as an output with anyone paying the user,
but not with the user himself. We classify pairings in Region C as ownership
relationships.

Region D Pairings in Region D (CI ≤ 50% ∧ CO ≤ 50%) do not have high
CI nor CO, which implies that there may be no association between the Bitcoin
addresses and IPs involved. Such pairings are likely the result of noise coming
from incorrect ownership hypotheses in Phase 1.

Final Ownership Regions
In Phase 1, we assigned owner IPs to every transaction. These owners were

then propagated to our (Bitcoin address, IP) pairings in Phase 2. The above
interpretation only applies if our definition of “owner” was synonymous with
“creator.” For Relay Pattern 1 and 2, this is the case; the first or only relayer of
a transaction likely created it. To find ownership mappings within Relay Patterns
1 and 2 data, we thus only keep pairings that map to Regions B and C. This
makes intuitive sense since transaction creators are associated with inputs and
may or may not be associated with outputs, making CI the only important
variable.

For Relay Pattern 3 data, however, the assumption that the “owner” is the
creator is not guaranteed to hold. As we described in Section 6.2, transactions
exhibiting rerelaying behavior could have been rerelayed by either their creator
or one of their recipients. Recipients are generally associated with a transac-
tion’s outputs and may or may not be associated with its inputs, thus making
CO the only important variable. In the event that an IP is the recipient of its
assigned transactions, the interpretations for Regions A and C in Figure 8 are
thus swapped. Unfortunately, there is no way to know if the IPs assigned as
owners to Relay Pattern 3 transactions were creators or recipients. Since Region
B is the only one where the interpretations overlap for either scenario, we only
consider Region B pairings from Relay Pattern 3 data.

6.6 Phase 5: Eliminating Insignificant Pairings

In our final Phase, we apply thresholds to the statistical metrics of our ownership
pairings from Phase 4 in order to obtain final Bitcoin address-to-IP mappings.
There are two types of thresholds to consider - one on support count and one
on confidence. Support count tells us how statistically significant a pairing is,
while confidence measures the strength of the ownership relationship between
the Bitcoin address and IP.

We found that the vast majority of our (Bitcoin address, IP) pairings had
a support count of 1 (see Table 3). These results are not surprising; to protect
their anonymity, Bitcoin users are encouraged to create a new Bitcoin address for
every transaction, thus decreasing the number of times they may become paired
with any one address. We also note that within data obtained from anomalous
transactions (Relay Pattern 2 and 3), pairings with higher support counts were
slightly more common. We decided to use support count thresholds of 5 and
10. These cutoffs allow us to be very conservative since they eliminate over 97%
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of our pairings. They also make sense from a practical standpoint since in the
Bitcoin system, 5 or 10 transactions sent by the same IP containing the same
Bitcoin address are highly infrequent.

Total Ownership Probability of Pairings Probability of Pairings Probability of Pairings
Dataset Region Pairings With Support Count = 1 With Support Count ≥ 5 With Support Count ≥ 10

Relay Pattern 1 1,678,390 99.411% 0.012% 0.004%
Relay Pattern 2 71,714 91.027% 2.047% 1.051%
Relay Pattern 3 27,708 76.732% 3.190% 1.660%

Table 3. We see that the vast majority of pairings found in the ownership regions
(Regions B and C for Relay Patterns 1 and 2, and Region B for Relay Pattern 3) of
each dataset had a support count of 1. Choosing 5 and 10 as thresholds allows us to
conservatively eliminate more than 97% of potentially erroneous pairings.

Our confidence thresholds were determined by the ownership regions from
Phase 4 (Figure 8). However, the region boundaries only provided the minimal
thresholds necessary for interpretations. We were interested in seeing how many
ownership pairings would remain as we increased these thresholds to progres-
sively more conservative values. We computed statistics for 7 confidence thresh-
old values for each support count threshold value. The following indicate the
criteria a pairing had to meet in order to avoid elimination.

Relay Pattern 1 and 2: Keep pairing (b, i) iff all the following are met:

1. NI(b, i) ≥ 5 or 10, depending on the computation being run.
2. CI > threshold, where threshold is varied from 50% to 100%.

This corresponds to pairings with a support count of at least 5 or 10 that are
found in Regions A and B of Figure 8.

Relay Pattern 3: Keep pairing (b, i) iff all the following are met:

1. NI(b, i) ≥ 5 or 10, depending on the computation being run.
2. NO(b, i) ≥ 5 or 10, depending on the computation being run.
3. CI > threshold, where threshold is varied from 50% to 100%.
4. CO > threshold, where threshold is varied from 50% to 100%.

The thresholds are kept equal for inputs and outputs. This corresponds to pair-
ings with a support count of at least 5 or 10 for both inputs and outputs that
are found in Region B of Figure 8.

Table 4 shows the final number of ownership pairings for each of our 3
datasets as we varied the thresholds. Table 5 shows the corresponding number
of unique owner IP addresses involved within these pairings.

7 Conclusion

As we see from Table 4, even when applying highly conservative constraints, we
were able to map between 252 and 1,162 Bitcoin addresses to the IPs that very
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Support ≥ 5 # Ownership Pairings Found

Relay Relay Relay
Confidence Pattern 1 Pattern 2 Pattern 3
Threshold (Normal) (Anomalous) (Anomalous)

> 50% 178 591 393
> 60% 104 585 362
> 70% 68 577 332
> 80% 39 565 288
> 90% 19 544 243
> 95% 17 542 218
> 99% 16 538 188

Support ≥ 10 # Ownership Pairings Found

Relay Relay Relay
Confidence Pattern 1 Pattern 2 Pattern 3
Threshold (Normal) (Anomalous) (Anomalous)

> 50% 53 194 196
> 60% 22 191 183
> 70% 9 190 165
> 80% 5 187 139
> 90% 4 180 121
> 95% 2 178 101
> 99% 1 174 77

Table 4. These tables indicate the number of pairings found in each dataset which
met the criteria for ownership.

Support ≥ 5 # Unique “Owners”

Relay Relay Relay
Confidence Pattern 1 Pattern 2 Pattern 3
Threshold (Normal) (Anomalous) (Anomalous)

> 50% 50 168 184
> 60% 35 167 170
> 70% 28 165 157
> 80% 19 163 139
> 90% 13 162 115
> 95% 12 162 106
> 99% 11 161 92

Support ≥ 10 # Unique “Owners”

Relay Relay Relay
Confidence Pattern 1 Pattern 2 Pattern 3
Threshold (Normal) (Anomalous) (Anomalous)

> 50% 17 89 120
> 60% 10 88 108
> 70% 6 88 99
> 80% 4 87 83
> 90% 4 87 72
> 95% 2 87 63
> 99% 1 86 50

Table 5. These tables indicate the number of unique owner IPs among the final own-
ership pairings from Table 4.

likely owned them. From Table 5, we see that these mappings were not simply
the result of one or two misbehaving IPs; at least 100 different “owners” were
associated with Bitcoin addresses that appear to belong to them. This shows that
it is indeed possible to deanonymize some subset of Bitcoin addresses simply by
observing transaction relay traffic.

We note that the vast majority of our final mappings were derived from
Relay Patterns 2 and 3 - anomalous transaction traffic. This implies that either
(1) most users on the Bitcoin network follow the recommendation of creating
a new Bitcoin address for every transaction (thus reducing the support count
for any given mapping to 1), or (2) the heuristic of assigning a transaction’s
ownership to its first relayer is ineffective at best and invalid at worst.

There are indeed several assumptions and caveats to our method. To increase
the likelihood that the creator of each transaction was among our directly con-
nected peers, we tried to connect to all listening nodes4. However, transactions
sent through proxy services such as Tor, I2P, or the tool provided in [19] would
still be assigned to incorrect owners since we cannot establish direct connections
to their true creators. Incorrect ownership would also be assigned for transactions

4 We avoided inbound connections to prevent connecting to Tor/I2P nodes. A listening
Bitcoin peer cannot be hidden by Tor or I2P since these technologies only protect
the anonymity of people making outbound connections.
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created by directly connected peers with slow connections, since we may receive
their transactions from other peers first. Our statistical approach allows us to
be tolerant of incorrect ownership assignments provided that the transactions of
such peers do not always arrive through the same intermediary.

There are also several caveats when using our method in the presence of
centralized Bitcoin entities such as mixing services and eWallets, which both
greatly affect other work in this area that relies on flow analysis.

Mixing Services allow users to send their coins to one set of service-controlled
addresses and receive them back from a set of unrelated addresses. This breaks
any analysis that tries to relate entities by tracking the flow of bitcoins across
transactions. Since we do not attempt to connect different users or find links
between an individual user’s transactions, our method is not affected by mixing

services.

eWallets, much like banks, allow users to create accounts which they can use
to receive and send money. Users never need to download the Bitcoin software
themselves and all of a user’s transactions are made on behalf of the user by
the eWallet service using keys controlled by the service. We caution that using
our method, Bitcoin addresses controlled by an eWallet would be paired with
the eWallet despite the funds actually belonging to a different user. This is
an unavoidable limitation of our approach. However, we argue that mappings
involving eWallet IPs are still valuable since such services can be pressured for
internal client information.

Taking these limitations and our results into account, we conclude that some
degree of deanonymization is possible within the Bitcoin system and we urge
users to take advantage of the many existing recommendations and services
offered to them in order to protect their privacy.
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